
NAG Fortran Library Routine Document

D01BCF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D01BCF returns the weights (normal or adjusted) and abscissae for a Gaussian integration rule with a
specified number of abscissae. Six different types of Gauss rule are allowed.

2 Specification

SUBROUTINE D01BCF(ITYPE, A, B, C, D, N, WEIGHT, ABSCIS, IFAIL)

INTEGER ITYPE, N, IFAIL
real A, B, C, D, WEIGHT(N), ABSCIS(N)

3 Description

This routine returns the weights wi and abscissae xi for use in the summation

S ¼
Xn
i¼1

wifðxiÞ

which approximates a definite integral (see Davis and Rabinowitz (1975), or Stroud and Secrest (1966)).
The following types are provided:

(a) Gauss–Legendre

S ’
Z b

a

fðxÞ dx; exact for fðxÞ ¼ P2n�1ðxÞ:

Constraint: b > a.

(b) Gauss–Jacobi

normal weights:

S ’
Z b

a

ðb� xÞcðx� aÞdfðxÞ dx; exact for fðxÞ ¼ P2n�1ðxÞ;

adjusted weights:

S ’
Z b

a

fðxÞ dx; exact for fðxÞ ¼ ðb� xÞcðx� aÞdP2n�1ðxÞ:

Constraint: c > �1, d > �1, b > a.

(c) Gauss–Exponential

normal weights:

S ’
Z b

a

x� aþ b

2

����
����
c

fðxÞ dx; exact for fðxÞ ¼ P2n�1ðxÞ;

adjusted weights:

S ’
Z b

a

fðxÞ dx; exact for fðxÞ ¼ x� aþ b

2

����
����
c

P2n�1ðxÞ:

Constraint: c > �1, b > a.
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(d) Gauss–Laguerre

normal weights:

S ’
Z 1

a

jx� ajce�bxfðxÞ dx ðb > 0Þ;

’
Z a

�1
jx� ajce�bxfðxÞ dx ðb < 0Þ; exact for fðxÞ ¼ P2n�1ðxÞ;

adjusted weights:

S ’
Z 1

a

fðxÞ dx ðb > 0Þ;

’
Z a

�1
fðxÞ dx ðb < 0Þ; exact for fðxÞ ¼ jx� ajce�bxP2n�1ðxÞ:

Constraint: c > �1, b 6¼ 0.

(e) Gauss–Hermite

normal weights:

S ’
Z þ1

�1
jx� ajce�bðx�aÞ2fðxÞ dx; exact for fðxÞ ¼ P2n�1ðxÞ;

adjusted weights:

S ’
Z þ1

�1
fðxÞ dx; exact for fðxÞ ¼ jx� ajce�bðx�aÞ2P2n�1ðxÞ:

Constraint: c > �1, b > 0.

(f) Gauss–Rational

normal weights:

S ’
Z 1

a

jx� ajc

jxþ bjd
fðxÞ dx ðaþ b > 0Þ;

’
Z a

�1

jx� ajc

jxþ bjd
fðxÞ dx ðaþ b < 0Þ; exact for fðxÞ ¼ P2n�1

1

xþ b

� �
;

adjusted weights:

S ’
Z 1

a

fðxÞ dx ðaþ b > 0Þ;

’
Z a

�1
fðxÞ dx ðaþ b < 0Þ; exact for fðxÞ ¼ jx� ajc

jxþ bjd
P2n�1

1

xþ b

� �
:

Constraint: c > �1, d > cþ 1, aþ b 6¼ 0.

In the above formulae, P2n�1ðxÞ stands for any polynomial of degree 2n� 1 or less in x.

The method used to calculate the abscissae involves finding the eigenvalues of the appropriate tridiagonal
matrix (see Golub and Welsch (1969)). The weights are then determined by the formula

wi ¼
Xn�1

j¼0

P �
j ðxiÞ2

( )�1

where P �
j ðxÞ is the jth orthogonal polynomial with respect to the weight function over the appropriate

interval.

The weights and abscissae produced by D01BCF may be passed to D01FBF, which will evaluate the
summations in one or more dimensions.
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5 Parameters

1: ITYPE – INTEGER Input

On entry: indicates the type of quadrature rule.

If ITYPE ¼ 0, Gauss–Legendre.

If ITYPE ¼ 1, Gauss–Jacobi.

If ITYPE ¼ 2, Gauss–Exponential.

If ITYPE ¼ 3, Gauss–Laguerre.

If ITYPE ¼ 4, Gauss–Hermite.

If ITYPE ¼ 5, Gauss–Rational.

The above values give the normal weights; the adjusted weights are obtained if the value of ITYPE
above is negated.

Constraint: �5 � ITYPE � 5.

2: A – real Input
3: B – real Input
4: C – real Input
5: D – real Input

On entry: the parameters a, b, c and d which occur in the quadrature formulae. C is not used if
ITYPE ¼ 0; D is not used unless ITYPE ¼ �1 or �5. For some rules C and D must not be too
large (See Section 6.)

Constraints:

if ITYPE ¼ 0, A < B;
if ITYPE ¼ �1, A < B, C > �1 and D > �1;
if ITYPE ¼ �2, A < B, and C > �1;
if ITYPE ¼ �3, B 6¼ 0, and C > �1;
if ITYPE ¼ �4, B > 0, and C > �1;
if ITYPE ¼ �5, Aþ B 6¼ 0, C > �1 and D > Cþ 1.

6: N – INTEGER Input

On entry: the number of weights and abscissae to be returned, n. If ITYPE ¼ �2 or �4 and
C 6¼ 0:0, an odd value of N may raise problems – see Section 6, IFAIL ¼ 6.

Constraint: N > 0.

7: WEIGHT(N) – real array Output

On exit: the N weights.

8: ABSCIS(N) – real array Output

On exit: the N abscissae.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended
value is 0. When the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The algorithm for computing eigenvalues of a tridiagonal matrix has failed to obtain convergence.
If the soft fail option is used, the values of the weights and abscissae on return are indeterminate.

IFAIL ¼ 2

On entry, N < 1,
or ITYPE < �5,
or ITYPE > 5.

If the soft fail option is used, weights and abscissae are returned as zero.

IFAIL ¼ 3

A, B, C or D is not in the allowed range:

if ITYPE ¼ 0, A � B;

if ITYPE ¼ �1, A � B or C � �1:0 or D � �1:0 or Cþ Dþ 2:0 > GMAX;

if ITYPE ¼ �2, A � B or C � �1:0;

if ITYPE ¼ �3, B ¼ 0:0 or C � �1:0 or Cþ 1:0 > GMAX;

if ITYPE ¼ �4, B � 0:0 or C � �1:0 or ðCþ 1:0=2:0Þ > GMAX;

if ITYPE ¼ �5, Aþ B ¼ 0:0 or C � �1:0 or D � Cþ 1:0.

Here GMAX is the (machine-dependent) largest integer value such that �ðGMAXÞ can be
computed without overflow (see the Users’ Note for your implementation for S14AAF).

If the soft fail option is used, weights and abscissae are returned as zero.

IFAIL ¼ 4

One or more of the weights are larger than RMAX, the largest floating-point number on this
machine. RMAX is given by the function X02ALF. If the soft fail option is used, the overflowing
weights are returned as RMAX. Possible solutions are to use a smaller value of N; or, if using
adjusted weights, to change to normal weights.

IFAIL ¼ 5

One or more of the weights are too small to be distinguished from zero on this machine. If the soft
fail option is used, the underflowing weights are returned as zero, which may be a usable
approximation. Possible solutions are to use a smaller value of N; or, if using normal weights, to
change to adjusted weights.

IFAIL ¼ 6

Gauss–Exponential or Gauss–Hermite adjusted weights with N odd and C 6¼ 0:0. Theoretically, in
these cases:

for C > 0:0, the central adjusted weight is infinite, and the exact function fðxÞ is zero at the
central abscissa.
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for C < 0:0, the central adjusted weight is zero, and the exact function fðxÞ is infinite at the
central abscissa.

In either case, the contribution of the central abscissa to the summation is indeterminate.

In practice, the central weight may not have overflowed or underflowed, if there is sufficient
rounding error in the value of the central abscissa.

If the soft fail option is used, the weights and abscissa returned may be usable; the user must be
particularly careful not to ‘round’ the central abscissa to its true value without simultaneously
‘rounding’ the central weight to zero or 1 as appropriate, or the summation will suffer. It would be
preferable to use normal weights, if possible.

Note: remember that, when switching from normal weights to adjusted weights or vice versa,
redefinition of fðxÞ is involved.

7 Accuracy

The accuracy depends mainly on n, with increasing loss of accuracy for larger values of n. Typically, one
or two decimal digits may be lost from machine accuracy with n ’ 20, and three or four decimal digits
may be lost for n ’ 100.

8 Further Comments

The major portion of the time is taken up during the calculation of the eigenvalues of the appropriate

tridiagonal matrix, where the time is roughly proportional to n3.

9 Example

This example program returns the abscissae and (adjusted) weights for the seven-point Gauss–Laguerre
formula.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* D01BCF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER N
PARAMETER (N=7)
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Local Scalars ..
real A, B, C, D
INTEGER IFAIL, ITYPE, J

* .. Local Arrays ..
real ABSCIS(N), WEIGHT(N)

* .. External Subroutines ..
EXTERNAL D01BCF

* .. Executable Statements ..
WRITE (NOUT,*) ’D01BCF Example Program Results’
A = 0.0e0
B = 1.0e0
C = 0.0e0
D = 0.0e0
ITYPE = -3
IFAIL = 0

*
CALL D01BCF(ITYPE,A,B,C,D,N,WEIGHT,ABSCIS,IFAIL)

*
WRITE (NOUT,*)
WRITE (NOUT,99999) ’Laguerre formula,’, N, ’ points’
WRITE (NOUT,*)
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WRITE (NOUT,*) ’ Abscissae Weights’
WRITE (NOUT,*)
WRITE (NOUT,99998) (ABSCIS(J),WEIGHT(J),J=1,N)
STOP

*
99999 FORMAT (1X,A,I3,A)
99998 FORMAT (1X,e15.5,5X,e15.5)

END

9.2 Program Data

None.

9.3 Program Results

D01BCF Example Program Results

Laguerre formula, 7 points

Abscissae Weights

0.19304E+00 0.49648E+00
0.10267E+01 0.11776E+01
0.25679E+01 0.19182E+01
0.49004E+01 0.27718E+01
0.81822E+01 0.38412E+01
0.12734E+02 0.53807E+01
0.19396E+02 0.84054E+01
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